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Abstract

Among the most important development of nuclear physics and pulsar astrophy-
sics over the past three decades have seen gradual recognition that Fermi-matter
constituting interior of atomic nuclei and main body of neutron stars possesses
solid-mechanical material properties of elasticity and viscosity and can be identified,
therefore, as viscoelastic Fermi-solid. This paper focuses on one issue of elastodyna-
mical model of the continuum mechanics of nuclear matter regarding oscillatory
behavior of a spherical mass of viscoelastic solid in the regime of quasistatic, force-
free, non-compressional oscillations less investigated in the literature compared to
oscillations in the regime of standing shear waves. We present rigorous mathematical
treatment of this problem by Rayleigh’s variational method and demonstrate practi-
cal usefulness of developed theory by solutions of several problems of current nuclear
physics and pulsar astrophysics.

1 Introduction. The nearly linear dependence of the nucleus volume and the nucleus
binding energy upon number of nucleons, meaning the saturation of internucleon forces,
unambiguously indicate that this according to Bethe “most conspicuous feature of nuclei”
is the same as it is for condensed matter. The condensed matter, as is known, comes in
two forms – liquid and solid. Accordingly, the question which of two fundamental models
of material continua – the fluid-mechanical or the solid-mechanical can provide adequate
description of the observable behavior of the nuclear matter objects has been and still
is central to the program on the study of material properties of superdense substance
constituting interior of atomic nuclei and neutron stars.

The past three decades of investigation on nuclear physics and pulsar astrophysics
have seen gradual recognition that elastodynamic approach to the continuum mechanics
of nuclear matter provides proper account of macroscopic motions of degenerate Fermi-
matter constituting interior of the nuclear material objects, the densest of all known
today. This paper focuses on one subtle issue of general solid-mechanical treatment of
oscillatory behavior of the nuclear matter objects in terms of vibrations of a viscoelastic
solid globe that has been called into question by the above development of both the
nuclear physics and pulsar astrophysics. Specifically, it is concerned with the regime of
quasistatic, force-free, oscillations less investigated in the literature as compared to the
solid globe oscillations in the regime of standing shear waves.
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2 Nodeless vibrations of viscoelastic solid globe. The basic dynamical variable
characterizing the state of motion of solid continuous medium is the field of material
displacement ui(r, t) whose emergence in the volume of solid object is associated with its
response to perturbation of mechanically equilibrium state in which ui = 0. The second law
of Newtonian dynamics for an isotropic incompressible viscoelastic medium is expressed
by the Lamé-Navier equation

ρüi = ∇k pik + ∇k πik. (1)

where pik is tensor of shear elastic and πik shear viscose stresses obeying Hookean law of
elasticity and Newtonian law of viscosity

pik = 2µuik πik = 2ηu̇ik (2)

uik =
1

2
(∇iuk + ∇kui) ukk = ∇kuk. (3)

From now on uik stands for tensor of deformation; µ is the shear modulus and η shear
viscosity which are regarded as constants. The energy balance in the process of deforma-
tions is controlled by equation the integral equation of energy balance of viscoelastic shear
deformations

∂

∂t

∫
ρu̇2

2
dV = −

∫
piku̇ik dV −

∫
πik u̇ik dV (4)

= −2

∫
µ uiku̇ikdV − 2

∫
η u̇ik u̇ik dV (5)

In what follows the focus is laid on the oscillatory response in which field of material
displacements obey the vector Laplace equation

∇2u(r, t) = 0 ∇ · u(r, t) = 0. (6)

This equation can be thought of as long-wavelength limit of the vector Helmholtz equation
∇2u + k2∇2 = 0 lying at the base of the well-studied standing-wave regime of oscillatory
response of viscoelastic sphere: in the limit of extremely long wavelengths λ → ∞ the
wave vector k = (2π/λ) → 0. The most striking feature of the regime of long wavelength
oscillations is that the restoring force of Hookean elastic (reversal) stress and dissipative
force of Newtonian viscous (irreversal) stress entering the basic equation of solid mechanics
turn to zero (from what the term quasistatic oscillations is derived), but the material
stresses themselves and the work done by these stresses in the bulk of an oscillating
solid globe do not. Based on this observation we show that in the case of force-free
fluctuations of stresses the frequency and lifetime of both spheroidal and torsional modes
in a viscoelastic solid globe can be computed by taking advantage of the energy variational
principle relying on the equation of energy conservation.

The point of departure is to use separable representation of the vector field of displace-
ments and tensor field of shear deformations

ui(r, t) = ai(r)α(t) uik(r, t) = aik (r)α(t) aik =
1

2
(∇i ak + ∇kai) , (7)
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where α(t) is the temporal amplitude and a(r) is the solenoidal vector field of instantane-
ous, time-independent, displacements. On substituting (7) in (5) we arrive at the well-
familiar equations for the amplitude α(t):

∂H
∂t

= −2F H =
Mα̇2

2
+
Kα2

2
F =

Dα̇2

2
(8)

Mα̈ +Dα̇ +Kα = 0 (9)

describing damped harmonic oscillator. The Hamiltonian H stands for the total energy
of dissipative free, normal, vibrations and F is the Rayleigh’s dissipative function. The
integral coefficients of inertia M , stiffness K and viscous friction D are given by

M =

∫
ρ(r) ai ai dV K = 2

∫
µ(r) aik aik dV D = 2

∫
η(r) aik aik dV. (10)

The solution taken in the form α(t) = α0 exp(λt) leads to

Ω2 = ω2
[
1 − (ωτ)−2

]
ω2 =

K

M
τ =

2M

D
. (11)

where ω is the frequency of the free, non-damped, oscillations and the τ is the time of their
viscous damping. Thus, to compute the frequency and lifetime of quasistatic oscillations
one need to specify the fields of instantaneous material displacements a(r) entering the
integral coefficients M , K and D of oscillating solid globe. The radial profiles of density
ρ(r), the shear modulus µ(r) and shear viscosity η(r) in the solid globe are regarded as
input data of the method.

Adhering to the above Lamb’s classification of the vibrational eigenmodes of a perfectly
elastic solid sphere, as spheroidal (shake or s−mode) and torsional (twist or t−mode),
in the case under consideration, the eigenmodes of quasistatic regime of oscillations can
be specified by two fundamental solutions to the vector Laplace equation, built on the
general, regular in origin, solution of the scalar Laplace equation

∇2 χ(r) = 0 χ(r) = r� P�(cos θ). (12)

The first one, describing instantaneous displacements in spheroidal mode of quasistatic
oscillations is given by the even parity (polar) poloidal vector field

as = As ∇ r� P�(cos θ) (13)

exhibiting irrotational character of quasistatic spheroidal oscillations: ∇ × as = 0. The
second fundamental solution to the vector Laplace equation describing instantaneous
displacements in the torsional mode is given by the odd parity (axial) toroidal vector
field

at = At∇× [rχ(r)] = At[∇χ(r) × r]. (14)

The radial profiles of these fields have no nodes in volume of oscillating globe, that is, in
the interval [0 < r < R]. In view of this, the term non-radial or nodeless shear oscillations
to this type of oscillatory behavior is applied. The intrinsic distortions in a viscoelastic
sphere undergoing non-radial spheroidal and torsional quasistatic oscillations are shown
Fig.1.
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Spheroidal shear vibrations

Torsional shear vibrations

quadrupole mode

quadrupole mode

octupole mode

octupole mode

Fig. 1: Artist view of intrinsic distortions in a viscoelastic solid globe undergoing quasistatic
shear oscillations in quadrupole (L=2) and octupole (L=3) overtones of spheroidal and toroidal
modes

The spectral formulas for the frequency of spheroidal oscillations ωs and the time of
their viscous damping τs as functions of multipole degree � are given by

ω2
s = ω2

0 [2(2�+ 1)(�− 1)] τs =
τ0

(2�+ 1)(�− 1)
(15)

ω2
0 =

µ

ρR2
τ0 =

ρR2

η
(16)

where ω0 is the natural unit of frequency and τ0 of the lifetime of shear vibrations.
The eigenfrequency of non-dissipative oscillations ωt and the time of their viscous

dissipation τt are given by

ω2
t = ω2

0[(2�+ 3)(�− 1)] τt =
2τ0

(2�+ 3)(�− 1)
(17)

From spectral formulas (15) and (17) it follows: the larger multipole degree of vibration
� the higher frequency and the less lifetime.

3. Nuclear giant resonances in the solid globe model. By now there are quite
cogent arguments showing that both the giant electric and magnetic resonances can be
treated on equal solid-mechanical footing as manifestation of spheroidal (electric) and
torsional (magnetic) oscillations of nuclear femtoparticle. The electromagnetic nomenclature
of nuclear giant resonances owe its origin to the type of induced electromagnetic moment of
fluctuating current density: the giant-resonance excitations of electric type are associated
with spheroidal mode of quasistatic oscillations of irrotational field of material displace-
ments us and those for the magnetic type with torsional mode of quasistatic differentially-
rotational oscillations of toroidal field of material displacements ut. The multipole degree
λ of electric M(Eλ) and magnetic M(Mλ) moments equal to multipole degree � of
excited spheroidal and torsional oscillatory state, respectively. The electric and magnetic
multipole moment of electric current density are given by

M(E�) = NE�

∫
j(r, t) · ∇r� P� dV M(M�) = NM�

∫
j(r, t) · [r ×∇] r� P� dV
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where j(r, t) = ρe u̇(r, t) with ρe = (Z/A)n is the charge density and n being the nucleon
density. NE� and NM� are well defined constants. Note, the quasistatic oscillations of
irrotational field of material displacements in spheroidal mode u = us = as(r)α(t) result
in excitations of vibrational states with non-zero electric multipole moment, whereas
magnetic multipole moment for this kind of oscillations is zero. The opposite situation
takes place for quasistatic oscillations of differentially-rotational displacements
u = ut = at(r)α(t) in torsional mode which lead to vibrational excited states with
non-zero magnetic multipole moment, while the electric multipole moment is zero. The
computational formulas for the total excitation strength (probability) of giant electric and
magnetic resonance are given by B(E�) = (2�+ 1) < |M(E�)|2 > and B(M�) = (2�+ 1)
< |M(M�)|2 >, respectively, where bracket stands for time average.

Fig. 2: The energy E = �ω and width Γ = �τ−1 of isoscalar electric and magnetic resonances,
interpreted from equal footing as manifestation of spheroidal (electric) and torsional (magnetic)
quasistatic oscillations whose frequency and lifetime is given by (15) and (17), respectively. The
multipole degree λ of excited electromagnetic moment of the electric current density equal to
multipole degree of oscillations λ = � ≥ 2, and ωF = vF /R, as pointed out in the text

Fig. 2 shows how the spectral formulas (15) and (17) of the nuclear solid globe model
can be utilized to extract numerical estimates for the shear modulus and shear viscosity
of nuclear matter from the experimental data of nuclear physics. The nuclear density
ρ = 2.8 1014 g cm−3 and the nucleus radius R = r0A

1/3 (r0 = 1.2 10−13 cm) are well
defined quantities. So, by fitting the data on general trends in the energy centroids and
spread widths of isoscalar giant resonances with aid of standard quantum mechanical
equations

E = �ω Γ = �/τ
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we can extract the values of µ and η. This procedure leads to the following estimates

η � 3 · 1011 dyn sec cm−2 µ � 1011 dyn cm−2

With the obtained from giant resonances value of shear viscosity η, one finds that the
time of viscous damping of shear oscillations, τ0 = ρR2/η, in the object of nuclear density
ρ and radius R ∼ 106 cm, typical of neutron stars, is evaluated as τ0 ∼ 107 − 108 years.

4 The solid globe models of astrophysical interest. In a highly idealized model
(which is due to Landau) a neutron star is thought of as homogeneous self-gravitating
mass of the degenerate neutron matter of normal nuclear density whose pressure of Fermi-
degeneracy opposes the pressure of gravitational contraction under the action of its own
weight. The state of gravitational equilibrium is determined by coupled equations for the
potential of self-gravity and equation for the pressure

∇2Φ(r) = −4πGρ(r) ∇P (r) = ρ(r)∇Φ(r). (18)

The solution of these equations (with standard boundary conditions of gravitostatics
for the potential on the globe surface, Φin = Φout|r=R and ∇rΦin = ∇rΦout|r=R, and
the condition of stress-free surface for the pressure, Pr=R = 0) , should be used. leads
to the profile of pressure inside the star is given by P (r) = Pc[1 − (r/R)2], where Pc =
(2π/3)Gρ2R2 is the pressure in the star center which must be equal to that for degenerate
Fermi-gas of non-relativistic neutrons PF = Kρ5/3. This last condition, that is Pc = PF

leads to canonical estimates of radius R ≈ 12 km and mass M = (4π/3)ρR3 ≈ 1.3M� of
neutron stars.

From quantum-mechanical side, the fact that the pressure in the star counterbalancing
Newtonian self-gravity is determined by the degeneracy pressure of Fermi-gas of indepen-
dent neutron-like quasiparticles means that the single-particle states of incessant quantum-
wave Fermi motion of an individual quasiparticle in the mean field of self-gravity are
described by Schrödinger equation coupled with Poisson equation for the potential of the
mean gravitational field Φ(r) in the star

i�
∂ψ

∂t
=

[
− �

2

2mn
∇2 + U(r)

]
ψ U(r) = −mnΦ(r)

∇2Φ(r) = −4πGρ(r) ρ =
mn

3π2
k3

F = 2.8 × 1014 g cm−3 (19)

where U is the potential energy of the in-medium neutron quasiparticle in its unceasing
Fermi-motion whose collision free character is provided by Pauli exclusion principle; ρ
stands for the uniform density in the star bulk equal to the normal nuclear density and
mn is the effective mass of the neutron quasiparticle. The solution to (19) having the form
Φ(r) = (2π/3)Gρ (3R2 − r2) suggests that the potential energy U can be represented in
the well-familiar form of spherical harmonic oscillator

U = −mn Φ(r) = −U0
G +

mω2
G r

2

2
U0

G = 2πmρGR2 ω2
G =

4π

3
Gρ (20)

where U0
G is the depth of spherical gravitational trap and ωG is the characteristic unit of

frequency of gravitational vibrations. The stationary states of single-particle Fermi-motion
of individual neutron in the mean field of self-gravity are described by Hamiltonian

Hψ =

[
− �

2

2m
∇2 +

mω2
G r

2

2

]
ψ = εψ ε = E + UG (21)
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whose spectrum of energies, accounted from the bottom of potential well, is well-known
εN = ε0(N + 3/2) where ε0 = �ωG ≈ 10−11 eV is the energy of zero-point oscillations
which is the measure of the energy distance between single-particle states of neutron
quasiparticles in the potential of self-gravity of neutron star (note the average distance
between discrete states of degenerate electrons in terrestrial solids such as metals and
semiconductors ∆ ∼ 10−18 − 10−20 eV). Here N = 2� + n is the shell’s quantum number
of harmonic oscillator, n and � are the principle and orbital quantum numbers of single-
particle orbits, respectively. This shows that the shell-ordered clusterization of single-
particle energies of neutron quasiparticles in the potential of mean gravitational field of
the neutron star model has common features with that for nucleons in the mean field
potential of the nuclear shell model having different physical origin.

In the star of homogeneous density the effect of gravity results in inhomogeneous
pressure which has one and the same dimension with shear modulus. Bearing this in mind
it is assumed that the shear modulus profile µ = µ(r) and the shear modulus profile
η = η(r) are identical to that for the pressure profile P (r). The model of homogeneous
solid star with

ρ = constant µ(r) = µc

[
1 −

( r
R

)2
]

µc = Pc = (2π/3)Gρ2R2. (22)

leads to the following estimates for the eigenfrequencies of global non-radial spheroidal
and torsional quasistatic oscillations

ω2
s = 2ω2

G(�− 1), ω2
t = ω2

G(�− 1). (23)

For a solid star – self-gravitating mass of a viscoelastic solid, the last spectral formulas
seems to have the same physical meaning as Kelvin’s formula does

ω2
f = ω2

G

2�(�− 1)

2�+ 1
. (24)

Fig. 3 shows that periods of background elastic pulsations of a homogeneous neutron
star model computed with use of derived spectral formulas with the value of shear
modulus extracted from data on nuclear giant resonances coincides with the timing of
microspikes in the windows between the main pulses. Taking into account the above
inference regarding the damping time of global quasistatic elastic vibrations of pulsars by
viscosity of neutron star matter one can conclude that these microspikes owe its origin to
non-radial elastodynamic (EDM) spheroidal and torsional pulsations triggered by neutron
star quakes.

Summary. An understanding dynamical laws governing macroscopic motions of degene-
rate nucleonic material – the continuum mechanics of nuclear matter – is important for
developing interconnected view of the nuclear physics and pulsar astrophysics. In this
work the argument have been presented that elastodynamic approach to the continuum
mechanics of nuclear matter provides proper account of macroscopic motions of degenerate
Fermi-matter constituting interior of the nuclear material objects, atomic nuclei and
neutron stars. In particular, it is shown that in addition to the similarity in nucleon-
dominated composition and the fact of common genetic origin of nuclei and neutron
stars rooted in supernovae of second type, they possesses identical orderly-organized
intrinsic structure showing that degenerate nucleon Fermi-matter of nuclei and neutron
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Fig. 3: Periods P against multipole degree L for spheroidal and torsional elastodynamic
(EDM) modes of background non-radial pulsations of neutron star manifested by microspikes of
millisecond duration in the windows of the rotation driven main pulse train

stars possesses properties of solid-mechanical viscoelasticity and can be treated therefore
as elastically deformable Fermi-solid. Following this line of argument, the regime of
quasistatic shear vibrations of viscoelastic solid globe has been investigated in some
details, the model lying at the base of macroscopic treatment of nuclear giant resonances
and data on seismic vibrations of neutron stars. It is shown how the predictions of
developed theory can be utilized to gain important information about transport coeffici-
ents of nuclear matter. The practical usefulness of considered mathematical models and
obtained analytic estimates is that they are quite general and can be applied to different
spherical systems whose behavior is supposedly governed by equations by solid-mechanics.
All details and references the interested reader can find in [1].
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